Source Reconstruction for 3D Bioluminescence Tomography with Sparse regularization

Xiaoqun Zhang
xqzhang@sjtu.edu.cn

Department of Mathematics/Institute of Natural Sciences, Shanghai Jiao Tong University

International Conference on Immage Processing: Theory, Methods and Applications
Outline

- Problem Description
- Reconstruction based on Gaussian Noise model
- Reconstruction based on Poisson Noise model
- Conclusions and future work

2. X. Zhang, Y. Lu, T. F. Chan, *A novel sparsity reconstruction method from Poisson data for bioluminescence tomography*, submit
Problem description

Bioluminescent Imaging system

- Powerful tumor detection/monitoring technique for *in vivo* Imaging. Extremely low backgrounds, high sensitivity and relatively simple instrumentation.

- Tissue is a medium exhibiting both scattering and absorption properties. Amount of light is proportional to number of cells producing it.

- BLT reconstruction: reconstruct sources from observed photons intensity on the surfaces.

Surface intensity depends on:
- Source depth
- Source shape and brightness
- Surface shape (curvature)
- Wavelength
- Tissue optical properties

Figure: By the Courtesy of XENOGEN
Photons Diffusion Model

For \(x \in \Omega \subset \mathbb{R}^3 \), \(\lambda \): wavelength, let

- \(\Phi(x, \lambda) \): photon flux density
- \(S(x, \lambda) \): source energy density

Steady-state diffusion equation

\[
\nabla \cdot \left(\gamma \nabla \Phi \right) - \mu_a \Phi + S = 0, \quad (\forall x \in \Omega)
\]

where \(\gamma(x, \lambda) \) is diffusion coefficient and \(\mu_a(x, \lambda) \) is absorption coefficient

Robin boundary condition

\[
\Phi + c \gamma(v(x) \cdot \nabla \Phi) = 0 \quad (x \in \partial \Omega)
\]

where \(v \): unit outer normal on \(\partial \Omega \); \(c \): parameter

Measurements: the photon density on the body surface \(\partial \Omega \) for discretized \(\lambda_i \)

\[
Q(x, \lambda_i) = \frac{\Phi(x, \lambda_i)}{c} = -\gamma(v \cdot \nabla \Phi(x, \lambda_i)) \quad (x \in \partial \Omega)
\]
Inverse Problem: Linear Relationship establishment

- Weak solution for $\Phi(x, \lambda)$
- Using finite elements method to discretize the domain Ω, $\Phi(x, \lambda)$ and $S(x, \lambda)$
- Linear equation

$$Au = f$$

where u: unknown nodes vector for S in Ω, f is the measurable nodes vector for Φ on the boundary $\partial\Omega$.

- A is undetermined, highly ill-posed, depending on mesh sizes and shape functions.
Noisy Model

- **Gaussian Noise Model**
 \[f = Au + N \]
 \(N \): noise modeled as a Gaussian distribution

- **Poisson Noise Model**
 \[f_i = \text{Poisson}((Au)_i) \]
 \[P(f_i|(Au)_i) = \frac{(Au)_i^{f_i} e^{(Au)_i}}{f_i!} \]
Classical Methods for Gaussian noise model

- Classical Maximum Likelihood method (Least square)

\[
\min_u \frac{1}{2} \|Au - f\|^2 \quad \text{s. t. } D = \{0 \leq u \leq C\}
\]

- Tikhonov regularization

\[
\min_u \frac{1}{2} \|Au - f\|^2 + \frac{\delta}{2} \|u\|^2 \quad \text{s. t. } D = \{0 \leq u < C\}
\]
Sparsity as a priori information

- l^1 regularization: **sparsity**

$$\min_S \frac{1}{2} \| Au - f \|^2 + \mu \| u \|_1 \quad \text{s.t. } D = \{0 \leq u \leq C\}$$

where $\| S \|_1 = \sum_i |S_i|$ denotes the l^1 norm of the vector S.

- Algorithm: Bound constrained quasi-Newton method (BLMVM)3 using smoothed l^1 norm.

Simulations settings

- Data simulated by Monte Carlo
- Simulation of photon diffusion
- Cube domain with a width of $15mm \times 15mm \times 15mm$ and discretized by hexahedra based FEM
- Photon distribution observed only on the top surface of the cubic domain at three wavelengths $\lambda_1 = 600nm, \lambda_2 = 650nm, \lambda_3 = 700nm$
Gaussian Noise model

Observed photon distribution on one surface

<table>
<thead>
<tr>
<th>Photons</th>
<th>600nm</th>
<th>650nm</th>
<th>700nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Observed photon distribution of single source (located at (0, 0, 0)) at the top surface.
Single Source Reconstruction

Figure: Reconstruction for single source located at $(0, 0, 0)$. First row: 10^6 photons; Second row: 10^4 photons
Dual sources with homogeneous media

Figure: Dual source BLT reconstructions when the real source central positions are at \((-3.0, 0.0, 3.0)\) and \((3.0, 0.0, 3.0)\) with 10^4 photons for 600 nm.
Dual sources with heterogeneous media

Figure: Dual source BLT reconstructions when the real source central positions are at $(−3.0, 0.0, 3.0)$ and $(3.0, 0.0, 3.0)$ with 10^4 photons for $600\,nm$.

Gaussian Noise model
Experimental data Reconstruction

GFP filter observation | DsRed filter observation | Volumetric mesh

No regularization | l^2 regularization | l^1 regularization

Figure: Experimental BLT reconstructions with mouse-shaped phantom. The actual source position is at $(114.5, 131.0, 3.0)$ (CT scanning), No regularization: $(111.7, 132.6, 2.7)$, l^2 regularization: $(115.1, 131.7, 2.4)$, l^1 regularization: $(114.7, 131.7, 2.9)$.
Poisson Noise model

- Random observation: $f_i \sim \text{Poisson}(Au)_i$
- Maximum a-posteriori (MAP) estimation

\[
\max_{u \geq 0} p(u|f) \Rightarrow \min_{u \geq 0} \sum_{\Omega}(Au - f \log Au)_i
\]

\[
\Rightarrow \min_{u \geq 0} D_{KL}(f, Au)
\]

where D_{KL} is the Kullback-Leibbler distance.

- Optimality condition KKT:
 \[
 \begin{cases}
 \nabla F(u) - \lambda = 0 \\
 \lambda_i u_i = 0 & \text{for } i = 1, \ldots, m \\
 \lambda_i \geq 0 & \text{for } i = 1, \ldots, m
 \end{cases}
 \]

\[(1)\]

where $\nabla F(u) = A^*1 - A^*(\frac{f}{Au})$
Reconstruction models

- EM algorithm (Richardson-Lucy algorithm): fixed point algorithm on

\[(A^* \mathbf{1} - A^*(\frac{f}{Au}))u = 0 \] \hspace{1cm} (2)

\[u_{k+1} = u_k A^* \frac{A^* \mathbf{1}}{A u_k} (\frac{f}{Au_k}) \]

- Sparsity A priori: \(l^1 \) norm regularization:

\[\min_{u \geq 0} \Phi(u) = D_{KL}(f, Au) + \mu \|u\|_1 \]

- \(l^0 \) norm regularization:

\[\min_{u \geq 0} D_{KL}(f, Au) \quad \text{s.t} \quad 0 < \|u\|_0 \leq K \]
Poisson ℓ^1 minimization algorithm

- Forward backward splitting + EM-ℓ^1 Algorithm \(^4\)

\[
\begin{align*}
\mathbf{u}^{k+\frac{1}{2}} &= (1 - \omega_k) \mathbf{u}^k + \omega_k \mathbf{u}^k \frac{A^*}{A^* \mathbf{1}_\Omega} \left(\frac{\mathbf{f}}{A \mathbf{u}^k} \right) \\
\mathbf{u}^{k+1} &= \arg\min_{\mathbf{u} \geq 0} \frac{1}{2} \sum_{\Omega} \frac{(A^* \mathbf{1}_\Omega)_i}{(\mathbf{u}^k)_i} (\mathbf{u} - \mathbf{u}^{k+\frac{1}{2}})_i^2 + \omega_k \mu \| \mathbf{u} \|_1
\end{align*}
\]

\(^4\)Brune, Sawatzky, Wubbeling, Lusters, Burger, 2009
SPIRAL-TAP

Let $F(u) = D_{KL}(f, Au)$,
$\tilde{F}_k(u) = F(u^k) + (u - u^k)^T \nabla F(u^k) + \frac{\alpha_k}{2} \|u - u^k\|^2$.

$$u^{k+1} = \arg\min_{u \geq 0} \tilde{F}_k(u) + \mu \|u\|_1$$

SPIRAL-TAP

- Initialize Choose $\eta > 1, \sigma \in (0, 1), M \in \mathbb{Z}^+, 0 < \alpha \in (\alpha_{\text{min}}, \alpha_{\text{max}})$, and initial solution u_0. Start iteration counter $k = 0$.
- Repeat
 - choose $\alpha \in (\alpha_{\text{min}}, \alpha_{\text{max}})$ by Barzilai-Borwein method:
 $$\alpha_k = \frac{(u^k - u^{k-1})^T \nabla^2 F(u^k)(u^k - u^{k-1})}{\|u^k - u^{k-1}\|^2}$$
 - $u_{k+1} = \arg\min_{u \geq 0} \frac{1}{2} \|u - s^k\| + \frac{\mu}{\alpha_k} \|u\|_1$
 - $\alpha_k \leftarrow \eta \alpha_k$, until u_{k+1} satisfies acceptance criteria:
 $$\Phi(u^{k+1}) \leq \max[k-M]_+, \ldots, k \Phi(u^k) - \frac{\sigma \alpha_k}{2} \|u^{k+1} - u^k\|^2$$
- $k \leftarrow k + 1$, until stopping criterion is satisfied

5 Harmany, Marcia, Willett, This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction Algorithms-Theory and Practice, preprint
\(l^0 \) minimization with Orthogonal Matching Pursuit (OMP)

Gaussian Noise model:

\[
\min_u \|A u - f\|^2 \quad \text{s. t.} \quad 0 < |u|_0 \leq K
\]

OMP algorithm

1. Initialize the residual \(r_0 = f \), the index set \(\Gamma_0 = [\] \);
2. At step \(k \), find the index \(j \) that solves the easy optimization problem
 \[
 j_k = \arg \max_{i=1,...,n} |\langle r_k, A_j \rangle|
 \]
3. Add in the index set \(\Gamma_{k+1} = \Gamma_k \cup \{j_k\} \)
4. Solve a least-squares problem to obtain a new signal estimate:
 \[
 u_{k+1} = \arg \min_u \|A|_{\Gamma_{k+1}} u - f\|^2
 \]
5. Repeat (2) until \(k = K \).
Iterative Poisson OMP Algorithm

\[
\min_{u \geq 0} D_{KL}(Au, f) \quad \text{s. t.} \quad 0 < |u|_0 \leq K
\]

Iterative Poisson OMP

- Initialize the index set \(\Gamma_0 = [\] \), the set of all index \(I = \{1, \cdots, n\} \);
- Outer iteration: \(t = 0 \) to \(t = T \)
- Set \(\hat{\Gamma}_0 = \Gamma_t \)
 - Inner iteration: \(k = 0 \) to \(k = K - 1 \)
 - Find \(\hat{u}_{k+1} \) and \(i_{k+1} \) by solving the subproblem:
 \[
 [i_{k+1}, \hat{u}_{k+1}] = \arg \min_{i \in \{1, \cdots, n\}} \min_{u \geq 0} D_{KL}(f, A|\hat{\Gamma}_k \cup \{i\}u)
 \]
 - Merge the new index: \(\hat{\Gamma}_{k+1} = \hat{\Gamma}_k \cup \{i_{k+1}\} \).
- Find the \(K \) largest elements of \(\hat{u}_K \) and set the corresponding index set as \(\Gamma_{t+1} \).
- If \(\Gamma_{t+1} \) is the same as \(\Gamma_t \), stop; otherwise continue.
Compressive sensing simulations

<table>
<thead>
<tr>
<th>Tests ((m, n, d, K))</th>
<th>Photons</th>
<th>EM-L1</th>
<th>SPIRAL</th>
<th>IterPOMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(256, 1024, 40, 4)</td>
<td>1e6</td>
<td>19.59</td>
<td>19.59</td>
<td>19.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.61e-3</td>
<td>4.59e-3</td>
<td>4.61e-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>1e4</td>
<td>22.84</td>
<td>22.84</td>
<td>22.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.70e-2</td>
<td>4.70e-2</td>
<td>4.39e-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>2.35</td>
</tr>
<tr>
<td>(256, 1024, 400, 4)</td>
<td>1e6</td>
<td>109.32</td>
<td>109.33</td>
<td>109.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.36e-3</td>
<td>2.39e-3</td>
<td>2.36e-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.23</td>
<td>0.07</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>1e4</td>
<td>103.66</td>
<td>103.66</td>
<td>103.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.55e-2</td>
<td>2.55e-2</td>
<td>2.55e-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.20</td>
<td>0.06</td>
<td>2.34</td>
</tr>
<tr>
<td>(256, 1024, 40, 10)</td>
<td>1e6</td>
<td>34.38</td>
<td>34.38</td>
<td>34.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.21e-3</td>
<td>7.16e-3</td>
<td>6.54e-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.31</td>
<td>0.01</td>
<td>5.99</td>
</tr>
<tr>
<td></td>
<td>1e4</td>
<td>35.36</td>
<td>35.36</td>
<td>35.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.96e-2</td>
<td>5.97e-2</td>
<td>5.48e-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td>0.03</td>
<td>5.92</td>
</tr>
</tbody>
</table>

Table: Compressive sensing reconstruction based on 5 trials. For each test setting, we generate a Bernoulli matrix of size \(m \times n \) with \(d \) non zeros in each row. The randomly generated signals have \(K \) nonzeros of intensity \(1e6 \) or \(1e4 \).
BLT Reconstruction results with FEM simulated data

True

EM-ℓ^1

SPIRAL

POMP

IterPOMP
Dual sources

- True
- EM-ℓ^1
- SPIRAL
- POMP
- IterPOMP
More sources setting tests

<table>
<thead>
<tr>
<th>True Sources</th>
<th>Reconstructed Sources</th>
<th>RelErr</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>5.50e-4</td>
<td>3651.7</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.5, 1.5, 5.5, 2.0e+6)</td>
<td>(2.5, 1.5, 5.5, 2.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>8.52e-1</td>
<td>593.6</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 2.5, 2.0e+6)</td>
<td>(0.5, 0.5, 1.5, 4.4e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>2.72e-3</td>
<td>530.1</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td>(-2.5, 2.5, 4.5, 9.9e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.5, 1.5, 5.5, 2.0e+4)</td>
<td>(2.5, 1.5, 5.5, 2.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 1.5, 5.6e+4)</td>
<td>1.27e+0</td>
<td>603.8</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 2.5, 2.0e+4)</td>
<td>(0.5, 0.5, -0.5, 1.4e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Synthesized test examples with iterPOMP algorithm for ℓ^0 regularization model
<table>
<thead>
<tr>
<th>Test with larger K</th>
<th>True Sources</th>
<th>Reconstructed Sources</th>
<th>RelErr</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.5, 0.5, 0.5, 5.0e+006)</td>
<td>(0.5, 0.5, 0.5, 4.8e+006)</td>
<td>3.32e-2</td>
<td>739.4</td>
</tr>
<tr>
<td></td>
<td>(3.5, -3.5, 2.5, 3.0e+006)</td>
<td>(3.5, -3.5, 2.5, 3.0e+006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.5, 2.5, 4.5, 1.0e+006)</td>
<td>(-2.5, 2.5, 4.5, 1.0e+006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.5, 1.5, 5.5, 2.0e+006)</td>
<td>(2.5, 1.5, 5.5, 2.0e+006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>(0.5, 0.5, 1.5, 4.9e+6)</td>
<td>1.19e+0</td>
<td>778.8</td>
</tr>
<tr>
<td></td>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td>(3.5, -3.5, 2.5, 2.9e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5, 2.5, 2.0e+6)</td>
<td>(0.5, 0.5, -0.5, 1.2e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.5, 1.5, 5.5, 2.0e+6)</td>
<td>(2.5, 1.5, 5.5, 2.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>1.21e-2</td>
<td>744.6</td>
</tr>
<tr>
<td></td>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td>(-2.5, 2.5, 4.5, 9.9e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.5, 1.5, 5.5, 2.0e+4)</td>
<td>(2.5, 1.5, 5.5, 2.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 1.5, 5.2e+4)</td>
<td>1.21e+0</td>
<td>770.0</td>
</tr>
<tr>
<td></td>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td>(3.5, -3.5, 2.5, 2.9e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5, 2.5, 2.0e+4)</td>
<td>(0.5, 0.5, -1.5, 6.2e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td>(-2.5, 2.5, 4.5, 9.9e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.5, 1.5, 5.5, 2.0e+4)</td>
<td>(2.5, 1.5, 5.5, 2.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 1.5, 6.2e+3)</td>
<td>1.21e+0</td>
<td>770.0</td>
</tr>
</tbody>
</table>
Monte-Carlo simulation recovery

Figure: Triple sources with MC generated data. Left: true sources. Right: IterPOMP Recovered. True location and intensity: (-2.5, 2.5, 4.5, 1e+4), (0.5, 0.5, 0.5, 5e+4), (3.5, -3.5, 2.5, 3e+4). The ℓ^0 algorithm has faithfully reconstructed the locations.
Figure: Triple sources with MC generated data. True location and intensity: $(-2.5, 2.5, 4.5, 1e+4)$, $(0.5, 0.5, 0.5, 5e+4)$, $(3.5, -3.5, 2.5, 3e+4)$. The ℓ^0 algorithm has faithfully reconstructed the locations.
More test

<table>
<thead>
<tr>
<th>True sources</th>
<th>Reconstructed</th>
<th>RelErr</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>(0.5, 0.5, 0.5, 1.7e+6)</td>
<td>6.64e-1</td>
<td>339.3</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td>(3.5, -3.5, 2.5, 1.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td>(-2.5, 2.5, 4.5, 3.4e+5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 0.5, 1.7e+4)</td>
<td>6.63e-1</td>
<td>338.1</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td>(3.5, -3.5, 2.5, 1.0e+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td>(-2.5, 2.5, 4.5, 3.3e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+6)</td>
<td>(0.5, 0.5, 0.5, 1.9e+6)</td>
<td>6.78e-1</td>
<td>890.8</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+6)</td>
<td>(3.5, -3.5, 2.5, 1.0e+6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 2.5, 2.0e+6)</td>
<td>(0.5, 0.5, 3.5, 3.7e+5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+6)</td>
<td>(-2.5, 2.5, 4.5, 3.4e+5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 0.5, 5.0e+4)</td>
<td>(0.5, 0.5, 0.5, 1.6e+4)</td>
<td>6.68e-1</td>
<td>722.4</td>
</tr>
<tr>
<td>(3.5, -3.5, 2.5, 3.0e+4)</td>
<td>(3.5, -3.5, 2.5, 9.9e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5, 2.5, 2.0e+4)</td>
<td>(0.5, 0.5, 2.5, 7.4e+3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2.5, 2.5, 4.5, 1.0e+4)</td>
<td>(-2.5, 2.5, 4.5, 3.3e+3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: MC recovery examples with iterPOMP algorithm.
Conclusions and future work

- Sparsity improves location accuracy
- ℓ^0 regularization is more robust than ℓ^1 regularization.
- ℓ^1 fails due to high correlation (ill-condition) of forward system matrix: higher order minimization algorithm for ℓ^1 poisson model?
- Poisson OMP matching pursuit is efficient for small number of sources reconstruction problem. Parallelizable and need less parameters compared to ℓ^1 minimization.
- Poisson OMP is a greedy algorithm. Need to improve the efficiency by a faster proximal solution
- Theoretical study on ℓ^1 and ℓ^0 reconstruction model for BLT problem.
- Test on real data, incomplete data with more complicated 3D body.
- Extension to total variation or framelets regularization together with better FEM discretization and more complicated 3D shapes.